Definitions and Abbreviations

As PIE 6.0 road testing winds down (more on than soon), and we are planning for the next phase, I noticed an issue while speaking to a trusted associate. I would say PIE and he would ask if that’s the aluminum one, or I’d say Trammel engine and he would think I am speaking of the PIE 6.0 that we have been testing. I thought to myself that there must have been a similar confusion in pre-war Germany at the young Volkswagen company. As they basically had 2 models, with a small number of options, people would confuse the “Beetle” with the “Bus” (Americanized names) so they simply labeled the Beetle as a “Type-1” and the then unnamed little van as a “Type-2”. If it worked to help reduce confusion at VW, it should also be able to help here at Stclairtech R&D!

For the sake of simplicity:

  1. PIE – If it is a planetary gear design with a stationary sun gear the PIE may easily be referred to as a Stclairtech Type-1, which can be shortened to ST-1 in documentation.
  2. Trammel – If it uses rotating discs with an X cut into the middle of it, the Trammel engine can easily be referred to as a Stclairtech Type-2, which will be shortened to ST-2 in documentation.

We will also be creating simplified identifier logos for the Stclairtech Type-1 & Type-2 (ST-1 & ST-2) soon. Until then: Stclairtech Type-1 (ST-1) is a PIE. Stclairtech Type-2 (ST-2) is a Trammel.

To anyone confused by the terminology issues, I understand the confusion and I want to keep it as simple as possible. The old axiom identified as KISS (Keep It Simple Stupid) still stands in our workshops, although we do tend to reverse the simple and stupid for a clarified statement making it Keep It Stupidly Simple. In that spirit, here is a short glossary of words, terms, and abbreviations referring to specific components of the thrust-generating devices we are developing here at Stclairtech R&D.

Abbreviations unique to our mechanical closed-loop propulsion system(s):

  1. PIE = Pulsed Inertial Engine
  2. ST-1 = Type-1 = Stclairtech Type-1 = PIE
  3. ST-2 = Type-2 = Stclairtech Type-2 ST-2 = Trammel engine
  4. SDC = Speed Differential Control
  5. QBD = Quantified Backlash Drive
  6. QBC = Quantified Backlash Coupler
  7. AMP = Active Mass Point
  8. FP = Force Point
  9. CLIP = Closed Loop Inertial Propulsion

Definitions & terminology unique to our mechanical closed-loop propulsion system(s):

  1. Closed Loop Inertial Propulsion = Propulsion produced without propellant.
  2. Pulsed Inertial Engine = Type-1 Closed Loop Thrust Producing Engine.
  3. Trammel engine = Type-2 Closed Loop Thrust Producing Engine.
  4. Mass = Any mass or weight, generally referring to a mass used to produce work.
  5. Active Mass = Mass that isn’t “fixed” in place and used to produce work.
  6. Active Mass Point = The point where an AMP applies force to do work.
  7. Force Point = The point where force is transmitted to the assembly.
  8. Speed Differential Control = Device used to change rotational speeds dynamically.
  9. Quantified Backlash Device (Drive or Coupler) = Coupling device with a specific calculated (quantified) amount of backlash, connected between rotating assemblies.
  10. Thornson Drive (EZKL) = A type-1 device which paved the way for modern Pulsed Inertial Engine technology.
  11. Reversion = The act of an object reversing its direction of movement or thrust.
  12. Wheel or Disc = The base rotating assembly currently being used to rotate the masses.

Preparing for Road Tests

The PIE 6.0 is ready to install for road testing. We are currently prepping the vehicle by building a multi-purpose hood for it to protect it from the weather, reduce noise, and contain it for safety purposes.

Although the relays and their wiring are still visible, the rest of the wiring has been greatly neatened and properly secured. A heavy duty 4-wire connector is being used to connect the engine to its control system & power source.

An easily removable galvanized steel angle is installed near the rear of the truck bed where the PIE 6.0 will “pull” the vehicle forward in the test sequences instead of “pushing” as we have done in previous tests.

Once the PIE is installed, a simple remote activation switch will run to the console by the driver’s seat. Road test updates will follow along with videos and photos.

Quantified Backlash Drive for the PIE

The PIE.xx or PIExx is the newest iteration of the original PIE which was based on the work of Roy Thornson. This build is using the masses, or weights, from the PIE 4 series as they are the most advanced masses built to date with their “dead-blow” properties. It is using the “stacked” or “double-decker” design of the PIE 2 series for the smaller footprint and for the implementation of some new features. It is using the non-contact switches from the PIE 4 series as they are simple and inexpensive to interface with multiple speed controller designs.

The newest and most radical feature added to the mix is one I am calling the “Quantified Backlash Drive” or QBD.

The QBD: The QBD is a 2 input/output “jackshaft” that allows partial uncoupling of the two while ensuring the uncoupled halves stay within a specified range or have a specific backlash between them. The entire purpose of this is to allow the two rotating assemblies (“wheels”) to use separate drive motors each with its own separate SDC but not allow the two wheels to get out of their approximate 90 degree synchronized relative positions.

Premise: The need for the QBD stems from wanting to have additional pulses per revolution (ppr) which will make the end-user feel less pulsations because they are much closer together. Previous attempts at having more than 2 ppr yielded no stand-alone thrust. Using 4 ppr, thrust was measured as an aid to propulsion for a vehicle with a large enough mass to absorb much of the pulsations. When dropping the ppr to 2 ppr, self-propulsion was achieved without the need for as much overall vehicle mass. Note: Some overall mass is still required to absorb reversion pulses.

The reason for the lack of self-propulsion is the interaction of pulses and the requirements of the SDCs. The SDCs add more than a speed boost through part of each rotation, they add a momentary deceleration when the mass nears apex causing the mass to impact its stop with much more force. This is incredibly important and cannot be done if there are other masses needing to accelerate at the same time. This makes the SDC combined with the QBD a truly operational “acceleration and deceleration” mechanism!

The new Quantified Backlash Drive being set up.

The SDC & QBD Ready for Testing.

PIE X Being Built Now

I am still around! I am still building! I am not going anywhere!

It has been quite a while since my last posting and my last video. I have been hard at work on the PIE X design. I am still not at liberty to detail its design except to say it is based on a series of rotating discs which use specialized components under tension and using a “Mass Displacement” system should create efficient linear thrust. It is still being called a PIE because it does have a pulsed propulsion component, but these pulses “should” happen 4 times per revolution and run at 1000 RPMs or more so the pulsing should be MUCH smoother than that of the previous PIEs.

Although this is not my original design, and it has been done before, there are no working devices known to exist and its duplication attempts have all been in vain… Until now. Well, soon anyway! The main unit is framed up and the rotating discs do rotate very well. The specialized internals are partially complete, and testing has had some very positive results thus far!

Without giving details regarding the origin of this base design, the person who originated it stated that they ‘…will not give away all my secrets…” and emphatically stated that others will have to “…figure it out for themselves…” and so we are figuring it out now.

It is unfortunate that the original designer was (and still is) compelled to distance themselves from this technology!

What I can say about the PIE X is that it is using 3 rotating “wheels” which are referred to as “discs” or “plates” and has at least 10 times more parts as the PIE 4.x series has in it, not including nuts and bolts holding the framework together. I can also say that I have built it with absolutely no regard for overall weight. Most of the unit is built with heavy steel components rather than lighter weight aluminum and/or hollow parts. Overall weight has become too much to easily move around as it is well over 130 lbs. and still does not have an electric motor installed. I am hoping that with all the excess mass it has enough thrust to easily demonstrate linear thrust.

Right now I am turning it with a hand crank, and because of a problem with what I refer to as a “backfire” I will not be installing a motor until later. The backfire is 100% mechanical (no actual fire) and refers to a point internally where stresses are suddenly released in the wrong direction and a backward movement happens (inside). This could have catastrophic effects, so the issue needs resolution before a motor can be used!

I did post a rather ambiguous video online with the internal pieces covered (for now)…

First Public Look at the PIE X

PIE 4.8 Changes to SDC and Issues on Latest Test Drive

New SDC Switch

It has been a very busy several weeks since I have had opportunity to update this blog. Work and life have been very busy and work on the PIE has been slow.

The re-phased PIE 4.8 has had the first road test completed with no SDC as the SDC micro switch is a continuous source of problems. The lever on the switch tends to break or get bent very easily and the roller wheel also tends to fall off frequently, so it was decided to use a “proximity switch” as a non-contact alternative. The switch chosen is a magnetic switch used for building security systems as a door/window open/close sensor. This is easily activated by mounting magnets instead of mechanical actuators and this works very well.

The PIE 4.8 second test drive was, however, less than outstanding. The re-phased PIE wheels and SDC “should” have yielded much better results than the previously phased tests when it was set up for “self-propulsion”, but the results were very disappointing as the engine load reduction was only in the 4% to 6% range.

I believe it has to do with the counter rotation of the wheels. The “zone of thrust” or “thrust zone” on a single wheel is rather wide as it pulls forward through a good 45 degrees of the rotation, by having the counter rotating wheel, the “thrust zone” is effectively narrowed but instead of “focusing” thrust, it only eliminates part of it.

The next steps to calculate the reason for such failure will be to adjust phasing back to synchronous and increase pulse torque by removing one weight from each wheel. The thrust will alternate between the CW and the CCW wheel, this should demonstrate the theory of the wide thrust angle vs. narrowing the zone.

Phased Back and Switched Down to Two Planet Gears

The non-functioning weight is being used as a balance weight. The planet gear that is not being used is removed and the weight is bolted to the wheel in its place which balances the wheels enough to keep it from tearing itself apart.

One Planet Gear Removed and the Weight Used for Balancing Wheel

If this works out, the plan is to reverse the rotation of one of the wheels and repeating tests with co-rotating wheels to increase thrust without narrowing the “thrust zone”.

Ready For Road Test Set #4

On a side note, I believe the thrust zone will automatically be much more condensed (thus stronger) with a different design. Perhaps the PIE X will accomplish this.

PIE 4.8 Testing- and -Doubters, Debunkers, and Haters:

Well now, it seems that with the openness of the experimentation, building, fabricating, and functional videos that the “it doesn’t work” folks have become “it only works because of” folks.

The better we get this working, and the more verified data there is, the more people keep coming up with reasons they think we get propulsion. Primarily this presumptive opinion input has revolved around friction. The common theory is that “contact” with virtually anything is the friction causing propulsion. I cannot say that anything is impossible, but short of tossing this thing out into space it will be nearly impossible to “disprove” that theory! Here is my position on this… “Who freaking cares?!?!?!” It just works, so let us expand on this and put it to use for the betterment of EVERYONE!

I get it that the super smart technical theorists believe that anything that isn’t incredibly complex simply cannot work. Sorry people, but that is just another false theory which has been mistaken as fact.

Mine is NOT the only system that works, mine is not the only tech that needs to be openly replicated. If the replications are done with an expectation of failure, it will most likely fail. If they are done with an open & optimistic attitude with an expectation of recording valuable data, extraordinary things are possible!

PIE 4.8 First Test Setup

I have recently published the video on YouTube and BitChute of the first round of Dual-Wheeled testing with fully independent asynchronous control of each wheel (CW & CCW rotating). More testing videos will be published, and a comprehensive report will be published when these tests are complete. That video is visible below.

PIE 4.7 is now the PIE 4.8 with Thrust Test Video

The PIE counterclockwise wheel (CCW) is nearly finished and will be tested very soon. I made a significant change to the “outer stop” which works so well to warrant changing up the model number to PIE 4.8 and I am installing them on all of the planet gears for the PIE 4.8.

improved outer stops and “Halo” mounts after painting

Halo mount and improved outer stop as seen during setup

I have also improved the mounting (resembling a halo) for the swinging weight. This improvement also allows for the addition of strengthener braces if it is found to be necessary.

Halo Bracket for Swinging Weight

The new stops allow for actual adjustment of the stops. This will allow me to make small changes to stop position and find out if there is a particular “sweet spot” for the outer stop.

Improved outer stop and halo mount working well during SDC setup

The CCW wheel is constructed to run on its own with its own separate motor and speed controller (as seen above). This is necessary to run the full gamut of necessary tests regarding phasing and RPMs. Once these tests are complete there will be better data regarding proper synchronization and whether the two opposing wheels should even be synched at all.

I have posted several videos on my YouTube and BitChute channels showing the building of the CCW and the new PIE 4.8 stops. Here (below) is the new PIE 4.8 CCW running its bench test with the SDC installed.

Here (below) is the first bench test run of the CCW before the SDC was installed.

Here (below) is the PIE 4.8 CCW set on some pipe rollers just to check for backward force (reversion) vs. forward force (thrust).

First Thrust bench Test of PIE 4.8 CCW Assembly

PIE 4.7 and “PIE X”

PIETECH 4.7 and “PIE X”:

It has been a while since my last post, or video so here is an update:

The PIE 4.7 second half (CCW wheel) is progressing, although somewhat slower than I would prefer as life’s circumstances have presented certain obstacles to its advancement. The first “dead blow” weight for it is ready to install, and another is in process.

I always said it is not a good idea to have more than one project going at a time, yet that is exactly what I am doing…

After communicating at length with other builders, I have split my time between the PIE 4.7 and a new design, the “PIE X”. It has some radically different internal components and will look a bit different but it is still what I would call a Pulsed Inertial Engine, so right now it is known as the “PIE X”.

This design has originated from other people so I will need their permission to “open source” any of that information! I require their permission to share or publish the information leading up to the PIE X without the consent of those who have been kind enough to share the basic design information with me!

If the PIE X is as feasible as predicted and becomes something worth pursuing more information may be provided (with permission), and if it falls short, I will provide thoughts regarding that failure (still, with permission only).

Note: The PIE X is quite a bit more expensive and much more complex to build and fabricate the components for, so it may not be something the casual hobbyist would feel comfortable with, at least not until there is a working prototype to prove the principals.

Those who know me and those who have followed along with my PIE/PIETECH projects know that I do not randomly spout “theory”. I only present factual information so until I have an experimental prototype, I would not request permission to elaborate any technical information. I only mention the PIE X as an ongoing project because it does slow the PIE 4.7 project and has pushed back the timetable to begin full testing. I am hoping to be performing “on road” testing of the PIE 4.7 by early June which gives me about 8 weeks.

I hope to be posting photos and videos VERY soon, so right now I need to go get busy, I have a PIE 4.7 to finish building and a PIE X to get underway!

Tolchin/Shipov Drives May Compliment PIE System

As the PIE project continues, I am not blind to reality. There are still many shortcomings to be overcome, forces within the PIE assembly which fight themselves and therefore fight against the very purpose of the PIE. “Reversion” is “anti-propulsion” and it is the bane of all inertial propulsion systems, a primary force to be circumvented as it cannot be eliminated. In the quest for circumvention there is a relatively simple sounding answer known as “redirection”. There is a type of device which has purported to have redirected reversion with good efficiency invented by a Russian named Tolchin and redesigned by another named Shipov. Because this Tolchin/Shipov (T/S) design effectively used redirection within a narrow band of geometric proportions, and because the mechanicals of the T/S drive are less complex than that of the PIE, I have allocated a bit of time and resource to verify T/S drive operation. Assuming the device is verified, a small T/S could be used as an anti-reversion device with the PIE and with other strong impulse drives as well.

Tolchin vs. Shipov: The Tolchin drive was originally fully mechanical with a spring motor and mechanical governors and brakes to build forward momentum and then partially nullify reversion. Once Shipov came into the picture the mechanical controls were replaced with electrical controls. I believe either would be effective, but electrical is easier to adjust and modify so that is the route my experimental work is following at this time.

Tolchin Drive
Shipov Drive

Noteworthy Difference: There is one other noteworthy difference! The Tolchin drive appears to have lacked the precision of the Shipov drive. Watching the videos of the Tolchin vs. the Shipov, Tolchin used one moveable mechanism inside another to lessen the reversion. The inside mechanism moved forward and back “pulling” the main trolly with what appear to be rubber bands. The inner mechanism may also be angled downward slightly to use gravity as an integral part of the cycle. Shipov eliminated these considerations with precise braking control of the rotating assembly.  

The Tolchin/Shipov drive cycle explained:

The T/S drive has 2 halves and they are identical mirror images of each other so I will only focus on 1/2 of the drive. I will be using clock positions of the weights for clarity. The rotation in this explanation will be clockwise to follow the numbers and 12 o’clock is straight forward.

1: At 12 the weight is moving at base speed.

2: At 1:30 (60 degrees) the weight is accelerated to approximately 2X to 3X the base speed (power stroke).

3: At 5:30 (30 degrees from center measured at the bottom) the weight returns to base speed.

4: The weight continues at base speed on around to 12 and starts over.

Since the acceleration force is designed to occur within a 90-degree arc (1/4 revolution), the forward thrust needs to be more than the reverse thrust used in returning the weights to the front. This is simple but stopping the acceleration (accelerated speed) at the exact right moment is critical if the T/S drive is to function!

Shipov Drive Cycle

Current: Right now, the gearing is put together and I am currently powering it with an obsolete cordless drill mechanism. Speed control is accomplished with the same controller being used on the PIE 4.7, including the SDC control.

Current T/S Type Drive Experiment

Problem: The problem with my replica is the weight’s return to base speed is not instant, and because the rotation is still moving too fast (and overshoots the desired slow-down position) the centripetal force pulls in the wrong direction. A brake is needed to quickly (instantly if possible) slow the rotation speed back to base speed. I believe this might be accomplished with a “motor brake” working similarly to a modern cordless drill which stops without coasting when the trigger is released. Another thought is that my weights are too heavy for the older model drill motor to effectively decelerate quickly, and they may need to be replaced with lighter weights.

Gyro, Centrifugal, Centripetal? Shipov called this a “4D gyroscope” where the 4th dimension is time (rotation speed), but it could also be called a “centripetal drive” since thrust is derived by accelerating the weights in an arc toward the rear, and then the centripetal energy is absorbed by reducing speed at the moment the direction is perpendicular to desired motion. Since the mirrored half is doing the same thing in the opposite direction, sideways force is cancelled at both the acceleration point and deceleration point.

PIE 4.7 – Now with Two Weights and Actuators, PIETECH P. 15

A second weight has now been put together for the PIE 4.7. It is .02kg heavier than the first weight, but that can be corrected (if necessary) by drilling shallow holes in the weight until corrected. The weight of each is 2kg +/-.

PIE 4.7 with Dual Weights and Actuators

Two SDC actuators are installed. They are each 8 inches long and are attached to the main wheel’s outer ring gear with ¼” beam clamps from the local hardware store.

New Controls

Additionally, the SDC potentiometer “pot” is installed next to the main speed control pot on the motor speed controller, a mini toggle switch was added to turn on or off the SDC function, and finally a main-power toggle switch was added between the battery and speed controller.

Bench testing is showing a most definite power output increase across the board when the SDC is on compared to tests without it. It seems that because of the improvements made, the PIE 4.7 (with its one wheel and two weights) is comparable to the PIE 2.1 which is twice its size. Proper testing will be done in the next week or so, then we will know for sure.

Fastened to the Bench & Back to Simple Chain Drive

A video is posted to both the YouTube and BitChute channels giving a quick tour of the PIE 4.7 and then a demo with it firmly attached to the bench.

Disassembled/Reassembled PIE 4.7 – Dual Actuator First Bench Test