Successful Road Test

A few weeks ago (June 16, 2024), the PIE 6.0 was mounted in the test vehicle. A protective & sound deadening box made from steel tubing, plywood and several thick rubber mud flaps was built to cover it. Due to personal time constraints, it wasn’t run & tested until nearly 3 weeks later…

Getting The PIE 6 Mounted
Protective Cover (Doghouse

July 6, 2024: The PIE 6.0 has successfully completed its maiden voyage! The PIE design is solid so there are really no surprises there. This test was mostly about the Quantified Backlash Drive.

The PIE 6 is really two single-disc PIEs stacked on top of each other in a single framework. The two PIEs are timed 90 degrees apart to smooth the thrust pulses. Previously, this has proven problematic as the pulsing of one disc (or wheel) would detract from the pulse of the other disc when timed this way. The problem seemed to be that the rotational speed of one was directly affecting the rotational speed of the other. Also, the forward pulse of either disc was theorized to be affecting the building of energy in the other disc.

Two different design changes were proposed to test the validity of those 2 theories. The theory concerning rotational speeds seemed more realistic as rotational velocity manipulation is important to the efficacy of the design.

The Quantified Backlash Drive coupler (QBD coupler) allows the 2 PIEs to work somewhat independently, while keeping the initial 90 degree timing within an acceptable tolerance. This whole effort is only to smooth the pulsations of thrust without reducing the thrust of each rotating assembly.

QBD Coupler Being Assembled
QBD Coupler Being Set Up To Use

Proper testing of thrust on the test vehicle will now be conducted to satisfy the scientific requirements to validate the design. Even without proper thrust validation the QBD coupler’s success is allowing the PIE design to be enhanced for maximum power. Perhaps a pair of 30 inch rotating assemblies with 15 pound masses! Maybe not exactly, but you get the picture.

This is now making me wonder how many “failed” designs might have been successful if they had used multiple independent rotating assemblies tied together with something similar to the Quantified Backlash Drive… It should be making us all start seriously thinking about it!

Setting Up The Control Box
Setting Up The Speed Controller
Ready To Test

Trammel Testing, APEC, PIE Mini

It has been MONTHS since I updated here… A lot has happened in my life and in the shop! For those interested, I have switched gears in my professional life. Since the change is quite dramatic, I have been under some stress “getting in the groove”, but it is a needed change and I’m getting it all figured out.

The PIE X aka Trammel Engine is coming along. Inside it (still not ready to reveal too many details) are some components which were made too weak, but they have been rebuilt and replaced with much more robust pieces! I have experienced some intermittent thrust and have kept moving forward with this as much as possible. I also recently received a much-improved motor and speed controller which is now installed.

A Look at the New Motor
First Run Test

It has become quite evident that as I contact potential business partners and investors, I need a small and lightweight demonstration model which can be taken along to those meetings. With that in mind, I introduce the “PIE Mini”. The PIE Mini is a nearly complete, single weight, working, demo model which is really small and light with plastic gears and a hollow tube instead of a large “wheel”. It’s power source is a super cheap cordless screwdriver from Harbor Freight. Although it is intended to be a portable demonstration device.

I believe it will also be a design which could become the first model of a sellable working model for science minded people everywhere to experiment with.

There are a couple of videos of the PIE Mini on BitChute .

First Test on Wheels

I have also now run a live demo of the Mini at the APEC conference on Feb. 27, 2022. During this presentation I showed that the unit actually needs mass to operate and that is really it’s only environmental prerequisite. I should be posting that presentation on my BitChute and YouTube channels very soon. Until then, here is a link to it on the American Antigravity YouTube channel.

Part 1
Part 2

I want to thank Ross Small for joining the video conference with a presentation of his own. He is building a “linear thrust” machine in the hopes that it will be a helpful learning aid for everyone to better understand the mechanism of inertial propulsion. Some of those very principals are integral to the Trammel Engine, and have also got me thinking about other, future, design builds.

Ross Small’s Presentation Part 1
Ross Small’s Presentation Part 2

PIE X Being Built Now

I am still around! I am still building! I am not going anywhere!

It has been quite a while since my last posting and my last video. I have been hard at work on the PIE X design. I am still not at liberty to detail its design except to say it is based on a series of rotating discs which use specialized components under tension and using a “Mass Displacement” system should create efficient linear thrust. It is still being called a PIE because it does have a pulsed propulsion component, but these pulses “should” happen 4 times per revolution and run at 1000 RPMs or more so the pulsing should be MUCH smoother than that of the previous PIEs.

Although this is not my original design, and it has been done before, there are no working devices known to exist and its duplication attempts have all been in vain… Until now. Well, soon anyway! The main unit is framed up and the rotating discs do rotate very well. The specialized internals are partially complete, and testing has had some very positive results thus far!

Without giving details regarding the origin of this base design, the person who originated it stated that they ‘…will not give away all my secrets…” and emphatically stated that others will have to “…figure it out for themselves…” and so we are figuring it out now.

It is unfortunate that the original designer was (and still is) compelled to distance themselves from this technology!

What I can say about the PIE X is that it is using 3 rotating “wheels” which are referred to as “discs” or “plates” and has at least 10 times more parts as the PIE 4.x series has in it, not including nuts and bolts holding the framework together. I can also say that I have built it with absolutely no regard for overall weight. Most of the unit is built with heavy steel components rather than lighter weight aluminum and/or hollow parts. Overall weight has become too much to easily move around as it is well over 130 lbs. and still does not have an electric motor installed. I am hoping that with all the excess mass it has enough thrust to easily demonstrate linear thrust.

Right now I am turning it with a hand crank, and because of a problem with what I refer to as a “backfire” I will not be installing a motor until later. The backfire is 100% mechanical (no actual fire) and refers to a point internally where stresses are suddenly released in the wrong direction and a backward movement happens (inside). This could have catastrophic effects, so the issue needs resolution before a motor can be used!

I did post a rather ambiguous video online with the internal pieces covered (for now)…

First Public Look at the PIE X

July Update: PIE 4.8, APEC Conference Presentation, Coming Soon – “PIE X” –

July Update:

I just realized that I have not updated this blog in a month, things have been pretty busy around here at Stclairtech R&D.

The PIE 4.8 is fully assembled and functional, I have put on an inertial propulsion presentation for the APEC conference, I have had to move part of our R&D lab to a new location, and actual construction of the PIE X is underway.

PIE 4.8 Testing:

The PIE 4.8 is running through a full gamut of tests where many things are being learned. It is also passing every test so far with very few technical problems.

It is installed in a road vehicle at this time. Below is a quick video getting ready to drive.

I have had smooth enough gearing that there has been no issue holding timing adjustments.

The counter rotating wheels has proven quite successful.

A pendulum type test has been performed successfully. I do not agree that this is truly the “gold standard” that agencies like NASA feel it is since it is easily manipulated. I went to great lengths to ensure accuracy, during which I discovered numerous things which could have skewed the results, reinforcing my belief that a more “foolproof” and “accurate” method needs to be developed. If the PIE did not “pulse” the pendulum test would be much more accurate! A video of the swinging pendulum test is below.

The SDC system works equally as well with 4 actuators allowing the 90-degree offset between wheels which works better as a hybrid design.

Test results will be fully posted here as soon as compiled properly!

APEC Conference:

I narrated a Power Point presentation at the APEC conference on June 26th 2021 regarding the PIE inertial propulsion system and its development from the beginning. The presentation covered development, successes, failures, and equally importantly that I am not trying to “prove” anything. My videos, this blog, presentations, in-person demonstrations, and all testing data is not an attempt to “prove” anything but is simply to “demonstrate” what has been found. What works and what doesn’t work, what is worth investigating and what to work around. A link to the APEC Website and to a video recording of the presentation is below.

Alternative Propulsion (APEC) website

Conference video from 06/26/2021. My part starts at about 3:46 but all are very well worth watching!

PIE X:

Although I have certain obligations to withhold some detailed information regarding the PIE X, I do want to touch on it briefly.

The geometric working design (like the Thornson design) has been presented to me as 2nd and 3rd hand information because the originator is “unavailable” (possibly deceased). There is almost no written information about this design, so much of it is being built from photos taken decades ago and drawings, diagrams, and notes from people who have held this information “in trust” for all these years.

A few details that I can share at this time, the PIE X plans will:

Be a chain driven, electric PIE.

Use 3 “wheels” which for this design will be known as “discs”.

Be able to be mounted in virtually any orientation.

Run at a slightly higher RPM.

Have less obvious “pulsing”.

Be built very heavy (sturdy), with experimental use in mind.

Not use (probably) an SDC control circuit.

Will have more moving parts than the earlier PIEs.

Is much more expensive to construct.

At this writing, the 3 discs are machined, welded, matched, and ready for paint and the framework is partially built and is ready for more components to be assembled. Most of the components have been procured but many of them require customization and there is still much to do!

I wish I could say more and share the PIE X build as openly as the previous builds, but it will be exciting to see if it works as we (my collaboration team and I) believe it will, the unit will be unveiled publicly for demonstrations!!

Until then, stay tuned for more info as it is able to be released!

PIE 4.8 Testing- and -Doubters, Debunkers, and Haters:

Well now, it seems that with the openness of the experimentation, building, fabricating, and functional videos that the “it doesn’t work” folks have become “it only works because of” folks.

The better we get this working, and the more verified data there is, the more people keep coming up with reasons they think we get propulsion. Primarily this presumptive opinion input has revolved around friction. The common theory is that “contact” with virtually anything is the friction causing propulsion. I cannot say that anything is impossible, but short of tossing this thing out into space it will be nearly impossible to “disprove” that theory! Here is my position on this… “Who freaking cares?!?!?!” It just works, so let us expand on this and put it to use for the betterment of EVERYONE!

I get it that the super smart technical theorists believe that anything that isn’t incredibly complex simply cannot work. Sorry people, but that is just another false theory which has been mistaken as fact.

Mine is NOT the only system that works, mine is not the only tech that needs to be openly replicated. If the replications are done with an expectation of failure, it will most likely fail. If they are done with an open & optimistic attitude with an expectation of recording valuable data, extraordinary things are possible!

PIE 4.8 First Test Setup

I have recently published the video on YouTube and BitChute of the first round of Dual-Wheeled testing with fully independent asynchronous control of each wheel (CW & CCW rotating). More testing videos will be published, and a comprehensive report will be published when these tests are complete. That video is visible below.

PIE 4.8 Nearing Test Mode, Science Elitists and Bucking the System, The Dark Side of Science?

I have been actively experimenting and building “stuff” for many years. Some of this “stuff” was really never meant to see the light of day or at least never to be “reviewed” by “academia”, it was done for the sheer joy of creating something new and unique. Now that one of these creations has progressed to the point where it becomes something profoundly useful, academia is pushing back harder than ever… Even with a functional prototype right in front of them, the PhD scientists are quick to expound their firm belief stating loudly “that’s not possible” and accusing anyone involved in any way of being a “charlatan”, a “fake”, or a “scammer”.

Just like the idea of “perpetual motion” or “zero-point energy”, “inertial propulsion” is seen as a direct threat to everything they have been taught and what they have been taught to stand for. Anyone even open to the idea is immediately labeled as a “fraud” and is no longer welcome anywhere near the circles of the “scientifically advanced” or “real” scientists (as they consider themselves).

It has even been publicly stated that “there is no longer a place for the ‘garage inventor’ because there is nothing more they can contribute to science”… HOGWASH! Science has become a cult of “elitists” who are so self-absorbed that all others are too far beneath them to be of any value as human beings…

I have (unfortunately) come into direct contact with these “elitist PhD’s” and have simply learned make peace with this bullshit. Now as people around me are starting to experience the ostracism there seem to be a couple of choices presented. One choice is to “roll over” and “take it up the a$$” by simply shutting up and going away. Another is to “avoid contact” with the elitists and quietly keep working. The third is to “stand and fight” against the system and the elitists running it.

No matter your personal decision, my advice (for what its worth) is to “stay true to what you believe in” BUT always “pick your fights wisely”! That is it… You may choose to avoid conflict and stay “safe”, but if you do choose to “stand-up” to the elite authority, do so wisely and do not expect to unilaterally “win”! Accept the small victories with graciousness, and consider the failures as “learning experiences” the same way we do in the lab or the shop!

Sorry to get so serious… Now I need to get back to work, and do what I do best building stuff… Thanks for reading this!

–The PIE 4.8 is ready to test with two counter rotating wheels. The two wheels are fully independent with their own identical speed controllers and motors. They are fastened together on a 2X4 frame, and initial testing will be on wheels followed by on-road testing. The photo has the assembly sitting on a work cart. That cart is not stable enough to run the PIE on, but it is enough to load/unload it from its transportation, and carry it between test stands.

PIE 4.8
PIE 4.8 CW & CCW Rotating Wheels Ready for Testing Together

PIE 4.8 Dual Assembly

PIE 4.8 – The APEC 5/1/2021 Conference and the “Inertial Doppler Effect”

The PIE 4.8 CCW wheel is pretty well set. I have attempted to get some force tests done with a force meter, the output readings were very unstable at best. I was however able to get some slightly better readings with an accelerometer.

The photos are screenshots from an accelerometer app on an android phone. The waveform or trace is below the “0” when pulling forward. It is obvious that there is a more stable pull during each pulse forward, and disorganized spikes in the reversion direction. Keep in mind that it will show a small reverse pull between forward pulses just because the chassis slows slightly between propulsive pulses.

On Saturday 5/1/2021 I had the honor of being asked (at the very last minute) to speak about the PIE systems on the APEC conference Zoom meeting. My part was near the end but just before open discussion at 4:51:28 and even though I did not have anything prepared it was still a lot of fun. APEC is Advanced Propulsion Engineering Conference and it is hosted by Tim Ventura of American Antigravity (https://www.americanantigravity.com). The full video of that conference is here:

During the conference we talked about the PIE systems, discussed theory, and talked about the near-future testing. We also discussed a phenomena that has been showing up in PIE experiments since the first on-road tests of the PIE 1.0. The phenomenon is that of increasing thrust when the entire unit is in motion. The faster the test vehicle moved the more forward thrust was experienced with each pulse. This has also been experienced and proven in the lab, so it has moved from a possibility into a fully testable repeating phenomenon. For lack of any better analogous terminology I started calling this the “Inertial Doppler Effect”. As a friend and colleague was maintaining that he thought the PIEs are still some form of “stick-slip” drive which depend on friction to operate (fully disproven in the lab) and it occurred to me that maybe he is wrong and right at the same time.

This is my current understanding of this phenomenon. I know that my “loose definition” of Doppler is not 100% correct when comparing a mechanical system to an EM wave form. This is a copy and paste of my reply to the idea of the PIE being a stick-slip drive:

My analogy of inertial Doppler is a “still forming” theorem, bit it currently a spacial/mass/inertial interaction which is proving itself in reality. Here are some cold, hard, facts… Doppler effect exists because the “center of mass” of the energy wave is moving and the energy is emanating from that “center of mass” making the wave have more “force” in the forward moving direction (Overly Simplified). Sooooo… The PIE (or I venture to say “any”) inertial drive will exhibit the Doppler effect, and if that is so (it is IMO) then all inertial drives ABSOLUTELY MUST have more mass in the overall structure than the masses being displaced (moved, oscillated, etc. also) in order to have directed thrust (linear motion). If the mass of the structure were less there would only be massive vibration (oscillation) – example: if a 2 moving mass (weights) structure weighed 5kg and the masses weighed 2.5kg each there would be a net linear propulsion of little more than zero even if the propulsive force was 2X higher than reversion force, but if the structure weighed 10kg there would be more mass “in motion” than there is “reverting”… So, ideally the mass of the structure should be 1 to 2X of the reversion force!

If I didn’t ramble too incoherently, and you are following my train of thought above, this means that ANY inertial drive which succumbs to this theory is a “stick-slip” drive but it is the inertia of the structure’s mass that it’s “sticking” to (pushing against). It also explains the Doppler effect because if it is “pushing” against inertia itself, that inertia is stronger as the structure moves!

I may have sprained a brain cell or two trying to put this theorem into words!!!

Till next time….

PIE 4.7 is now the PIE 4.8 with Thrust Test Video

The PIE counterclockwise wheel (CCW) is nearly finished and will be tested very soon. I made a significant change to the “outer stop” which works so well to warrant changing up the model number to PIE 4.8 and I am installing them on all of the planet gears for the PIE 4.8.

improved outer stops and “Halo” mounts after painting

Halo mount and improved outer stop as seen during setup

I have also improved the mounting (resembling a halo) for the swinging weight. This improvement also allows for the addition of strengthener braces if it is found to be necessary.

Halo Bracket for Swinging Weight

The new stops allow for actual adjustment of the stops. This will allow me to make small changes to stop position and find out if there is a particular “sweet spot” for the outer stop.

Improved outer stop and halo mount working well during SDC setup

The CCW wheel is constructed to run on its own with its own separate motor and speed controller (as seen above). This is necessary to run the full gamut of necessary tests regarding phasing and RPMs. Once these tests are complete there will be better data regarding proper synchronization and whether the two opposing wheels should even be synched at all.

I have posted several videos on my YouTube and BitChute channels showing the building of the CCW and the new PIE 4.8 stops. Here (below) is the new PIE 4.8 CCW running its bench test with the SDC installed.

Here (below) is the first bench test run of the CCW before the SDC was installed.

Here (below) is the PIE 4.8 CCW set on some pipe rollers just to check for backward force (reversion) vs. forward force (thrust).

First Thrust bench Test of PIE 4.8 CCW Assembly

PIE 4.7 Project Continues!

It has been a while since my last update. I guess I kind of went down a bit of a rabbit hole looking for answers to the reversion issues that virtually all inertial drives have. The answers I found are useful, and everything learned has value!

My search took me through the world of compound levers, offset drives and finally to the Tolchin/Shipov drive. The T/S drive taught me the most as it uses some of the same principals necessary in virtually ALL inertial drives, which is adding the 4th “D” (Dimension) to a gyroscopic arrangement.

4D Gyroscopes: Everyone (basically) learned about 3D in grade school. Height, depth and width or in machine shop geometric algebra, X, Y and Z axis or dimensions. The 4th D is T, or time. Time in a spinning gyroscope is measured in RPM, or revolutions per minute. Adding the 4th “dimension” to a gyro is done by rapidly and purposefully changing the RPM faster AND slower, generally within a single revolution.

If you were to view a conventional toy-type gyroscope, you will notice a frame surrounding the flywheel and a smooth-rimmed flywheel in the center. Now, use a marker (pencil or crayon is fine) and put one dot on the rim of the flywheel. That is now our reference point. Place the gyroscope so you can see the entire rim of the frame and the rim of the flywheel. Place a mark on the frame at the top and the bottom as you are viewing it (right and left work too) and then using your finger turn the flywheel rapidly from one mark to the next, then slowly from that mark back to the beginning. That is the 4th D!!!

Imagine spinning the flywheel at 1000 RPM but installing a mechanism that will slow it to 800 RPM for one-half of each revolution, returning it to its original velocity for the other half, and you have a 4D gyroscope!

Now replace the dot on the flywheel with a small weight, and spin it fast then slow then fast then slow with every revolution one-half of it is moving fast and one-half moving slower. It might not be exactly what you desire, but there WILL be inertial propulsion derived from that device!

It is not about shuttling weights around; it is all about changing the “time base” by rapidly changing speeds during EVERY revolution! Shuttling weights can be part of that and quite often they are, unfortunately many people believe that the weight shuttling causes propulsion, when in fact it is only a component of the gyroscope that can be time-manipulated into performing propulsive work. This can be accomplished mechanically or electrically, and although those two systems may appear fundamentally different, they are like the difference between a diesel and a gas engine, they may be “fed” fuel differently and the ignition of that fuel is done differently they are still a piston & crankshaft engine (there are also rotary and turbine but I’m not going there right now).

So, keeping in mind that there are different ways of accomplishing the same basic task, I am back to the PIE 4.7 with a renewed outlook and it is definitely time to “Git ‘Er Done”!

Changes Brought About Via Single Wheel Testing PIETECH P.16

***Note #1: This post was created before P.15 so the testing spoken of has been completed already. Read PIETECH P.15 for explanation.***

As I approach and prepare for the next set of propulsion tests for the PIE 4.7, want to note the most recent successful design changes made which do increase power output in the early bench tests performed so far. It should be noted that none of these changes require any input power increases.

***Note #2: I also have had another idea, one that seems so preposterous that I am consulting with a few trusted individuals before revealing it.***

The first three of these four are self-explanatory but we shall touch on them very quickly.

It is a definite power output increaser to:

1… hold the weight in center longer (via guides).

Weight With Guide Attached

2… to be able to adjust speeds on the fly (via speed controller and SDC gain control).

SDC Controller

3… use dead blow weights (stronger & longer pulses without increasing input energy).

Building a Dead Blow Weight

4… use the SDC (counters loading slow-down and increases pulse strength).

SCD Actuator and Micro-Switch

Number 4, the SDC (Speed Differential Control) is a real game-changer, so that is where the focus needs to be for now. Some of the important details & technical notations regarding this are as follows:

1st: The output goes down dramatically if speed is reduced during the “power stroke”. This was discovered when the original belt would slip at times. It stood to reason that if speed decrease was detrimental, an increase could be very beneficial. Mechanical experimentation was performed very successfully by my friend and colleague Tokio using offset (eccentric) gear drives. When he added them to a PIE design (PIE 3.* series) great power was generated, and many components were destroyed by internal forces. Electrically changing speeds is quick and efficient!

2nd: Higher speeds are known to increase power output, but reducing the weight in order to achieve the high speeds was counterproductive. The SDC can momentarily increase the speed higher than necessary to maintain base RPM, simulating a higher speed without adding damaging high loads to the mechanism or increasing input power.

3rd: Adding speed only when required adds to the outward swinging motion of the weight and reducing that speed “could” increase the impact on the outer stop to increase power.

4th: This may me a stretch of my imagination… I believe that the combination of the guide and SDC acts upon the PIE similar to the “Inner Planet Trap” did in the Roy Thornson design. I have to think that instead of speeding up the RPM at the correct moment, Roy was “slowing down” the RPM at the beginning of the power stroke and allowing the RPM to rise in mid-power stroke.

5th: Keeping the electric motor speed low is important as it reduces the overall inertial flywheel effect, allowing faster RPM changes to the PIE’s main wheel (flexplate/flywheel).

Something that can be kept in mind for future experiments would be the utilization of a CNC (think Arduino, maybe) controlled stepper motor and servo system, perhaps with hall effect sensors for feedback, which would virtually eliminate all of the guides, micro switches, gears, and chains. Even the main wheel could just be a straight arm attached to a stepper motor.

Those innovations (if ever used at all) are definitely a long way off in the future, and for now we need to learn to walk before we can learn to run.